
TCTL TCTLC

COMP

3

9

1 5

3
Algorithmic Verification

<latexit sha1_base64="P4jUUJHo6g1yopyZBD74hiv3LdI=">AAAIZHicjVRbb9NIFD6kXEKWW6l4QEhooCBalIa4JYJqVcTSF14QRaIFqanQ2D5xRpnYZjxpG6L8Cn7d/oH9EfvEmWPnRgy7juw5/ubMd75zif1Uq8w2m39fqKxcvHT5SvVq7Y9r12/cvLV6+yhLBibAwyDRifnsywy1ivHQKqvxc2pQ9n2Nn/zevtv/dIomU0n80Q5TPOnLKFYdFUhL0JfVyve2j5GKR1b1vqUqsAOD41o7TkI8zqy0WO8orfd8PcAH2826ULGySuoTsfHV2xSjtsVz63fyNeuM9t+/OxiPx38uMxgMmUD6ySkKo6KuFUln76tHVHqnhGqnnOdUJRotU/mok7OfqXZLqHbLqSKDGJeJ0ruOqSw/r5xpiJqkMNWMhOW0Skha5STBUMZzeTmKVl0GAaZWxRGX6fzXdQqNPMubgmGEXIgydGeGuqoXqDeH7paiM4bWHNqa8Z5vFikJacWGV9/yGtNWkMq/dJQYZbt9FYgjNNMJZO0Yhwvz9+XWerPR5EssG15hrENxHSSrlTa0IYQEAhhAHxBisGRrkJDR7xg8aEJK2AmMCDNkKd5HGEONzg7IC8lDEtqjZ0RvxwUa07vjzPh0QFE03YZOCnhc+IRkdxjNVxdfzPn+KsaIuZ3GIa1+wdkn1EKX0P86N/H8v+dcTpYUvuRcFOlMGXFZBgsZdWjV9G5Jv3sOyRPJCumUISsgTBOaIy6GoTWvq8u8y3WW7Idk/S4Xd6oH3zj+xGeCaVp9ZjIUzeU9YE15rhLqdCal96yI7mrv8op4x50yhJ3Rvuu00zBhzqOMyGsLXrH3K9gj1OmVFNdV8gnjj+l28Xo8BYJ3cIFdMCKpFm7f5767majRvfyLaT+cVjPjPFz9keJ70IAW2f1p5IwrH5Bnh+5FBX3OVdHq5n6Zz2lxWZ7R0/VYsJ3MacgonoB97lfM/RAcyXkgc7jpzKvfWMoI4ZS7O2SdlnuC8Iw8M54ZzTmNWK/intf5H6JoR9NOxJ0dwgPKuUkdmuXsVM9nmnKlU45mp3WY/OeQJ6oLQtyd6SB7vtaLyvO6WZ7dfM4Rzum5B4/o7dFvlEw8c0SyJUlZyioM+yZFrfMTuSJTeM5mpgbuW+f9/GVbNo62G97zxvMP2+uv3xRfvSrcg4ewQfPyAl7DWziAQwgq/66Ilc2Vp1f+qV6rrlXv5K6VC8WZNVi4qvd/AB3w9Tw=</latexit>

Timed CTL and TCTLC

Dr. Liam O’Connor
CSE, UNSW (and LFCS, University of Edinburgh)

Term 1 2020

1

TCTL TCTLC

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.

Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E ϕ U∼c ϕ | A ϕ U∼c ϕ

Where p ∈ P is an atomic proposition and (∼) ∈ {<,≤,=,≥, >}.

2

TCTL TCTLC

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.

Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E ϕ U∼c ϕ | A ϕ U∼c ϕ

Where p ∈ P is an atomic proposition and (∼) ∈ {<,≤,=,≥, >}.

3

TCTL TCTLC

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.

Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |

E ϕ U∼c ϕ | A ϕ U∼c ϕ

Where p ∈ P is an atomic proposition and (∼) ∈ {<,≤,=,≥, >}.

4

TCTL TCTLC

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.

Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E ϕ U∼c ϕ | A ϕ U∼c ϕ

Where p ∈ P is an atomic proposition and (∼) ∈ {<,≤,=,≥, >}.

5

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

6

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state).

Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

7

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s,

and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

8

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

9

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)

s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

10

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

11

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

12

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

13

TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ

14

TCTL TCTLC

Derived Operators
Standard U is just U≥0.

Path formulae F∼k and G∼k are similar to normal CTL:

F∼k ϕ ≡ True U∼k ϕ
G∼k ϕ ≡ ¬F∼k ¬ϕ

Definition

A timed automaton A satisfies a formula ϕ, written A |= ϕ iff its
initial configuration (q0, 0) satisfies ϕ i.e. (q0, 0) |= ϕ.

Example

The alarm is activated at most 10 time units after a problem
occurs.

AG(problem⇒ AF≤10 alarm)

15

TCTL TCTLC

Derived Operators
Standard U is just U≥0.

Path formulae F∼k and G∼k are similar to normal CTL:

F∼k ϕ ≡ True U∼k ϕ
G∼k ϕ ≡ ¬F∼k ¬ϕ

Definition

A timed automaton A satisfies a formula ϕ, written A |= ϕ iff its
initial configuration (q0, 0) satisfies ϕ i.e. (q0, 0) |= ϕ.

Example

The alarm is activated at most 10 time units after a problem
occurs.

AG(problem⇒ AF≤10 alarm)

16

TCTL TCTLC

Derived Operators
Standard U is just U≥0.

Path formulae F∼k and G∼k are similar to normal CTL:

F∼k ϕ ≡ True U∼k ϕ
G∼k ϕ ≡ ¬F∼k ¬ϕ

Definition

A timed automaton A satisfies a formula ϕ, written A |= ϕ iff its
initial configuration (q0, 0) satisfies ϕ i.e. (q0, 0) |= ϕ.

Example

The alarm is activated at most 10 time units after a problem
occurs.

AG(problem⇒ AF≤10 alarm)

17

TCTL TCTLC

Derived Operators
Standard U is just U≥0.

Path formulae F∼k and G∼k are similar to normal CTL:

F∼k ϕ ≡ True U∼k ϕ
G∼k ϕ ≡ ¬F∼k ¬ϕ

Definition

A timed automaton A satisfies a formula ϕ, written A |= ϕ iff its
initial configuration (q0, 0) satisfies ϕ i.e. (q0, 0) |= ϕ.

Example

The alarm is activated at most 10 time units after a problem
occurs.

AG(problem⇒ AF≤10 alarm)

18

TCTL TCTLC

Derived Operators
Standard U is just U≥0.

Path formulae F∼k and G∼k are similar to normal CTL:

F∼k ϕ ≡ True U∼k ϕ
G∼k ϕ ≡ ¬F∼k ¬ϕ

Definition

A timed automaton A satisfies a formula ϕ, written A |= ϕ iff its
initial configuration (q0, 0) satisfies ϕ i.e. (q0, 0) |= ϕ.

Example

The alarm is activated at most 10 time units after a problem
occurs.

AG(problem⇒ AF≤10 alarm)

19

TCTL TCTLC

Derived Operators
Standard U is just U≥0.

Path formulae F∼k and G∼k are similar to normal CTL:

F∼k ϕ ≡ True U∼k ϕ
G∼k ϕ ≡ ¬F∼k ¬ϕ

Definition

A timed automaton A satisfies a formula ϕ, written A |= ϕ iff its
initial configuration (q0, 0) satisfies ϕ i.e. (q0, 0) |= ϕ.

Example

The alarm is activated at most 10 time units after a problem
occurs.

AG(problem⇒ AF≤10 alarm)

20

TCTL TCTLC

Converting to Automata

Let’s try to construct a timed (Büchi) automaton that accepts all
timed words that satisfy this property:

AG(problem⇒ AF≤10 alarm)

How do we know where to introduce clocks?

21

TCTL TCTLC

TCTLC

TCTL is CTL with explicit clock constraints and reset.

Syntax

ϕ ::= x ∼ k | x .ϕ | p | ¬ϕ | ϕ ∧ ϕ | E ϕ U ϕ | A ϕ U ϕ

Where x ∈ X is a clock variable and (∼) ∈ {<,≤,=,≥, >}.

x .ϕ is a clock reset.

Example (Alarm)

How do we express:

AG(problem⇒ AF≤10 alarm)

in TCTLC?

22

TCTL TCTLC

TCTLC

TCTL is CTL with explicit clock constraints and reset.

Syntax

ϕ ::= x ∼ k | x .ϕ | p | ¬ϕ | ϕ ∧ ϕ | E ϕ U ϕ | A ϕ U ϕ

Where x ∈ X is a clock variable and (∼) ∈ {<,≤,=,≥, >}.

x .ϕ is a clock reset.

Example (Alarm)

How do we express:

AG(problem⇒ AF≤10 alarm)

in TCTLC?

23

TCTL TCTLC

Expressivity

Result

All TCTL formulae are expressive in TCTL by introducing a fresh
clock for each constrained operator:

E ϕ U∼k ψ ≡ (x . E ϕ U (ψ ∧ x ∼ k))

The converse direction does not hold (Bouyer et al. 2005):

x . EF(ϕ ∧ x < 1 ∧ EG(x < 1⇒ ¬ψ))

cannot be expressed in TCTL.

24

TCTL TCTLC

Expressivity

Result

All TCTL formulae are expressive in TCTL by introducing a fresh
clock for each constrained operator:

E ϕ U∼k ψ ≡ (x . E ϕ U (ψ ∧ x ∼ k))

The converse direction does not hold (Bouyer et al. 2005):

x . EF(ϕ ∧ x < 1 ∧ EG(x < 1⇒ ¬ψ))

cannot be expressed in TCTL.

25

TCTL TCTLC

Model Checking

Same techniques as reachability:

1 Convert timed system A to discrete systems A′ via region
automata.

2 Convert TCTLC formula ϕ to standard CTL formula ϕ′ on
region automata.

3 A |= ϕ⇐⇒ A′ |= ϕ′, so apply standard CTL model checking.

4 Checking is still PSPACE complete.

26

TCTL TCTLC

Model Checking

Same techniques as reachability:

1 Convert timed system A to discrete systems A′ via region
automata.

2 Convert TCTLC formula ϕ to standard CTL formula ϕ′ on
region automata.

3 A |= ϕ⇐⇒ A′ |= ϕ′, so apply standard CTL model checking.

4 Checking is still PSPACE complete.

27

TCTL TCTLC

Model Checking

Same techniques as reachability:

1 Convert timed system A to discrete systems A′ via region
automata.

2 Convert TCTLC formula ϕ to standard CTL formula ϕ′ on
region automata.

3 A |= ϕ⇐⇒ A′ |= ϕ′, so apply standard CTL model checking.

4 Checking is still PSPACE complete.

28

TCTL TCTLC

Model Checking

Same techniques as reachability:

1 Convert timed system A to discrete systems A′ via region
automata.

2 Convert TCTLC formula ϕ to standard CTL formula ϕ′ on
region automata.

3 A |= ϕ⇐⇒ A′ |= ϕ′, so apply standard CTL model checking.

4 Checking is still PSPACE complete.

29

TCTL TCTLC

UPPAAL

A mature model checking framework for timed transition systems.
B. Srivathsan has released a video lecture on using UPPAAL on
several examples here:

https://www.youtube.com/watch?v=tUSxi_rSXwo

30

https://www.youtube.com/watch?v=tUSxi_rSXwo

	TCTL
	TCTLC

