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TCTL TCTLC

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.

Syntax

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E ϕ U∼c ϕ | A ϕ U∼c ϕ

Where p ∈ P is an atomic proposition and (∼) ∈ {<,≤,=,≥, >}.
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TCTL TCTLC

TCTL Semantics
Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|≤k) be the sum of delays along the prefix ρ|≤k of the
execution ρ.

s |= p ⇔ p ∈ L(s)
s |= A ϕ U∼k ψ ⇔ ∀ρ ∈ Exec(s). ρ |= ϕ U∼k ψ
s |= E ϕ U∼k ψ ⇔ ∃ρ ∈ Exec(s). ρ |= ϕ U∼k ψ

ρ |= ϕ U∼k ψ ⇔ ∃i . Dur(ρ|≤i ) ∼ k ∧ ρi |= ψ ∧ ∀j < i . ρj |= ϕ
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TCTL TCTLC

Derived Operators
Standard U is just U≥0.

Path formulae F∼k and G∼k are similar to normal CTL:

F∼k ϕ ≡ True U∼k ϕ
G∼k ϕ ≡ ¬F∼k ¬ϕ

Definition

A timed automaton A satisfies a formula ϕ, written A |= ϕ iff its
initial configuration (q0, 0) satisfies ϕ i.e. (q0, 0) |= ϕ.

Example

The alarm is activated at most 10 time units after a problem
occurs.

AG(problem⇒ AF≤10 alarm)
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TCTL TCTLC

Converting to Automata

Let’s try to construct a timed (Büchi) automaton that accepts all
timed words that satisfy this property:

AG(problem⇒ AF≤10 alarm)

How do we know where to introduce clocks?
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TCTL TCTLC

TCTLC

TCTL is CTL with explicit clock constraints and reset.

Syntax

ϕ ::= x ∼ k | x .ϕ | p | ¬ϕ | ϕ ∧ ϕ | E ϕ U ϕ | A ϕ U ϕ

Where x ∈ X is a clock variable and (∼) ∈ {<,≤,=,≥, >}.

x .ϕ is a clock reset.

Example (Alarm)

How do we express:

AG(problem⇒ AF≤10 alarm)

in TCTLC?
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TCTL TCTLC

Expressivity

Result

All TCTL formulae are expressive in TCTL by introducing a fresh
clock for each constrained operator:

E ϕ U∼k ψ ≡ (x . E ϕ U (ψ ∧ x ∼ k))

The converse direction does not hold (Bouyer et al. 2005):

x . EF(ϕ ∧ x < 1 ∧ EG(x < 1⇒ ¬ψ))

cannot be expressed in TCTL.
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TCTL TCTLC

Model Checking

Same techniques as reachability:

1 Convert timed system A to discrete systems A′ via region
automata.

2 Convert TCTLC formula ϕ to standard CTL formula ϕ′ on
region automata.

3 A |= ϕ⇐⇒ A′ |= ϕ′, so apply standard CTL model checking.

4 Checking is still PSPACE complete.
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TCTL TCTLC

UPPAAL

A mature model checking framework for timed transition systems.
B. Srivathsan has released a video lecture on using UPPAAL on
several examples here:

https://www.youtube.com/watch?v=tUSxi_rSXwo
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