Algorithmic Verification

Timed CTL and TCTL(¢

Dr. Liam O'Connor
CSE, UNSW (and LFCS, University of Edinburgh)
Term 1 2020

TCTL TCTLc
@000 0000

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

TCTL TCTL¢
€000 0000

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.

TCTL TCTLc
@000 0000

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.

Syntax

pu=p|l@|eAp]

TCTL TCTL¢
€000 0000

Timed Logic

Timed CTL

TCTL is CTL with clock constraints (as in TA) attached to U (and
derived operators).

Note: The next-state operator X has no meaning in dense time.
Syntax

pi=plleAp|EpUicp[Ap Uiy
Where p € P is an atomic proposition and (~) € {<, <, =,>,>}.

TCTL TCTL¢
0000 0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state).

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s,

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|<k) be the sum of delays along the prefix p|< of the
execution p.

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|<k) be the sum of delays along the prefix p|< of the
execution p.

sEp & pel(s)

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|<k) be the sum of delays along the prefix p|< of the
execution p.

sEp & pel(s)
sEApU ¢ & VpeExec(s). pEw Uk ¥

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|<k) be the sum of delays along the prefix p|< of the
execution p.

sEp & pel(s)
sEApU ¢ & VpeExec(s). pEw Uk ¥
sEEpU v & dpekxec(s). pEp Uk ¥

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|<k) be the sum of delays along the prefix p|< of the
execution p.

sEp & pel(s)
sEApU ¢ & VpeExec(s). pEw Uk ¥
sEEpU v & dpekxec(s). pEp Uk ¥

TCTL
0000

TCTL Semantics

Semantics are defined on a timed transition system.

Timed Transition Systems

A TTS is a timed automaton with a labelling function L
associating sets of atomic propositions to states (analogous to
Kripke structures).

Our modelling relation is defined on a configuration (state). Let
Exec(s) be the set of executions from configuration s, and
Dur(p|<k) be the sum of delays along the prefix p|< of the
execution p.

sEp & pel(s)
sEApU Y & VpekExec(s). plE e Uk ¥
sEEp Uy < dpcExec(s). plEo Uk ¥

pEeUwt & JiDur(pl<i) ~kApi EYAY <i pjlEe

TCTL
foJe] Yo)

Derived Operators
@ Standard U is just Uxo.

TCTL¢
0000

TCTL
0000

Derived Operators

@ Standard U is just U>o.
@ Path formulae F., and G- are similar to normal CTL:

TCTL
0000

Derived Operators
@ Standard U is just Uxo.
@ Path formulae F., and G- are similar to normal CTL:

Fok o
Gk o

True Uk ¢
ﬁFNk —\QO

TCTLc

TCTL
0000

Derived Operators
@ Standard U is just Uxo.
@ Path formulae F., and G- are similar to normal CTL:

Fok o
Gk o

True Uk ¢
ﬁFNk —\QO

Definition
A timed automaton A satisfies a formula ¢, written A = ¢ iff its
initial configuration (qo,0) satisfies ¢ i.e. (qo,0) = ¢.

TCTL

[e]e] o]

Derived Operators
@ Standard U is just Uxo.
@ Path formulae F., and G- are similar to normal CTL:

Fok o
Gk o

True Uk ¢
ﬁFNk —\SD

Definition
A timed automaton A satisfies a formula ¢, written A = ¢ iff its
initial configuration (qo,0) satisfies ¢ i.e. (qo,0) = ¢.

Example

The alarm is activated at most 10 time units after a problem
occurs.

TCTL
0000

Derived Operators
@ Standard U is just Uxo.
@ Path formulae F., and G- are similar to normal CTL:

Fok o
Gk o

True Uk ¢
ﬁFNk —\SD

Definition
A timed automaton A satisfies a formula ¢, written A = ¢ iff its
initial configuration (qo,0) satisfies ¢ i.e. (qo,0) = ¢.

Example

The alarm is activated at most 10 time units after a problem
occurs.
AG(problem = AF<jg alarm)

TCTL
feelel]

Converting to Automata

Let's try to construct a timed (Biichi) automaton that accepts all
timed words that satisfy this property:

AG(problem = AF<jo alarm)

How do we know where to introduce clocks?

TCTL TCTLc
0000 €000

TCTLc

TCTL is CTL with explicit clock constraints and reset.

Syntax
pu=x~klxg|pl-eleAp|EpUp|ApUyp

Where x € X is a clock variable and (~) € {<,<,=,>,>}.

x.@ is a clock reset.

TCTL TCTLc
0000 @000

TCTLc

TCTL is CTL with explicit clock constraints and reset.

Syntax
pu=x~klxp|lp|l-@|leAp|EpUp|ApUyp

Where x € X is a clock variable and (~) € {<,<,=,>,>}.

x.@ is a clock reset.

Example (Alarm)

How do we express:

AG(problem = AF<jg alarm)

in TCTLc?

TCTL TCTLc
0000 0e00

Expressivity

Result

All TCTL formulae are expressive in TCTL by introducing a fresh
clock for each constrained operator:

EoU.rv = (x. E@U (¥Axn~k))

TCTLc
0e00

Expressivity

Result
All TCTL formulae are expressive in TCTL by introducing a fresh
clock for each constrained operator:

EoU.rv = (x. E@U (¥Axn~k))

The converse direction does not hold (Bouyer et al. 2005):
x. EF(p Ax <1NEG(x < 1= —)))

cannot be expressed in TCTL.

Model Checking

Same techniques as reachability:

© Convert timed system A to discrete systems A’ via region
automata.

TCTLc
[e]e] o]

TCTLc
[e]e] o]

Model Checking

Same techniques as reachability:

© Convert timed system A to discrete systems A’ via region
automata.

@ Convert TCTL¢ formula ¢ to standard CTL formula ¢’ on
region automata.

TCTLc
[e]e] o]

Model Checking

Same techniques as reachability:

© Convert timed system A to discrete systems A’ via region
automata.

@ Convert TCTL¢ formula ¢ to standard CTL formula ¢’ on
region automata.

QO AE <= A E ¢, so apply standard CTL model checking.

TCTLc
[e]e] o]

Model Checking

Same techniques as reachability:

© Convert timed system A to discrete systems A’ via region
automata.

@ Convert TCTL¢ formula ¢ to standard CTL formula ¢’ on
region automata.

QO AE <= A E ¢, so apply standard CTL model checking.
@ Checking is still PSPACE complete.

TCTLc
[e]e]e])

UPPAAL

A mature model checking framework for timed transition systems.
B. Srivathsan has released a video lecture on using UPPAAL on
several examples here:

https://www.youtube.com/watch?v=tUSxi_rSXwo

https://www.youtube.com/watch?v=tUSxi_rSXwo

	TCTL
	TCTLC

